
Issue #6 November 2018

zxzine

Special Timex Sinclair 2068 Issue

zxzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service
to the Sinclair ZX81 community.
Writers are invited to submit
articles for publication. Readers
are invited to submit article
ideas.

Created using Open
Source Tools:

­ OpenOffice
­ Scribus
­ Gimp
­ SZ81
­ EightyOne

Copyright 2018
Timothy Swenson

Creative Commons License
­ Attribution
­ Non­Commercial
­ Share­Alike

You are free:

­ To copy, distribute,
display, and perform
the work.

­ To make derivitive
works.

­ To redistribute the
work.

Table of Contents

Editorial 1

Timex Sinclair 2068 History 1

T/S 2068 Specifications 3

Basic Tools for T/S 2068 Emulators 4

Basic Compilers for the T/S 2068

.......................... 5

T/S 2068 Emulators 5

T/S 2068 Assembly Language Programming
.......................... 6

Loading Screens 9

ZXpaintyone 10

QDDASM ­ Quick & Dirty DisAssembler
.......................... 11

Page 1

Editorial

This issue is focused on the Timex/Sinclair 2068. I
was a subscriber to Sync magazine, the only
magazine that was covering the Sinclair line of
computers in the US, when the Spectrum was
announced. Due to the lead time of magazines, I
read about the Spectrum in the summer of 1982,
months after it was released in the UK. It was then
a wait to see when it would be introduced into the
United States.

The specifications on the Spectrum were not ground
breaking. The Atari 400/800 and the Tandy Color
Computer had about the same graphics capability
(everyone judged the computer by the gee­wiz
graphics on those days). What was
groundbreaking, of course, was the price. Sinclair
was known for coming in with a low price and the
Spectrum was far cheaper that its competition.

Then there was the long wait for the Spectrum to be
released in the American market. Instead of
releasing the Spectrum, Timex created the T/S
2068. When the T/S 2068 was released, despite
starving student in college, I bought one as soon as
it hit the local stores. With Timex watches being
available in most drug stores,
the T/S 2068 was available at
Payless Drugs, Longs Drugs,
and even some catalog stores.
Of course, no employees at the
store had any idea how to use
the computer, it was just a box
to sell.

I put my ZX81 aside and started
on the T/S 2068. With limited
information (mostly just the
User Guide) I tinkered and
tinkered and took the T/S 2068
for a test drive. Then bad luck
struck. Timex called it quits
and the T/S 2068 was taken off
the market. Stores sold their
stock. A few months after this,
my T/S 2068 started failing. It
was too late to get a replacement. There was no
local computer shop that would repair it (I tried).
So, into the closet it went, never to be used again.

A few years later, I moved up to the QL. I had fond
memories of the time I spend with the ZX81, but
very little memories of the T/S 2068. When I
joined Timex/Sinclair clubs and was exposed to the
T/S 2068, I was not interested as I had a QL that
was, to me, a real computer.

Only now, many years later am I looking to explore
what I did not explore earlier with the T/S 2068. I
want to explore those parts to the T/S 2068 that
make it different that the Spectrum. My main focus
will be on assembly language programming. As the
T/S 2068 is similar to the Spectrum, there are
enough differences that does not let Spectrum
assembly programs work on the T/S 2068.

I have not abandoned the ZX81 and there are a few
interesting ZX81 oriented articles.

Timex Sinclair 2068 History

When Timex created the Timex Sinclair 1000, it
had made an agreement with Sinclair that it was the
sole company that could market Sinclair products in
the United States. Originally Sinclair sold the
ZX81 through mail order in the United States, but

Timex decided that they would
flood the US with the ZX81
through all the stores that
already carried Timex products.
So, the T/S 1000 came out and it
really was available everywhere.

When the Spectrum was
released in the UK, Sinclair had
to let Timex do the introduction
into the United States. Timex
had originally planned to make
minor changes on the Spectrum
and sell it in the United States.
Then Timex hit the FCC. When
going through certification with
the FCC, the changes necessary
to meet the FCC standards
required a whole new chip to be
designed and built.

With the delay in creating the new chip, Timex
decided to add some new features. In the fast

Page 2

moving home computer market, a computer could
be outdated in 6 months to a year. Timex wanted to
make the computer more usable for games, so they
added a
cartridge
port. To
challenge
other home
computers
Timex
added the
AY sound
chip. With
the
cartridge
port, Timex
also added
the idea of
bank switching to address more memory. These
changes would later greatly affect the users.

At the Boston Computer Society, on October 26,
1983, a year and a half after the Spectrum was
introduced in the UK, Timex introduced the Timex
Sinclair 2000. The "2000" was the working title of
the computer and was natural sequence after the
T/S 1000. If I remember it right, Timex wanted to
release the T/S 2000 with different memory
versions, so the T/S 2068 was named, and then the
changed their mind and just stayed with the 2068.

The T/S 2068 was released to a fairly crowded
home computer market, mostly dominated by US
computer companies like Commodore, Atari, Texas
Instruments, Tandy, and even Mattel. American
consumers liked to buy what they saw advertised
and what they saw support for. Anyone walking

into a computer shop in 1983 did not see a Sinclair
or Timex Sinclair. There was little support from the
computer stores and no support from the stores that

sold the
Timex/Sin
clair
computers.
You could
walk into a
retail
store, buy
a T/S 2068
and a
microwave
, and you
would not
expect the
staff to

help you use either one of them.

After being on the market for 6 months, Timex
called it quits. For anyone taking the time to think
about what computer to purchase, that was a signal
to not buy a T/S 2068. A number did buy them as
the stores were closing out their stocks, but I think
the vast majority were mostly retired within a year,
once the owners found that it took some work to
understand a home computer.

The T/S 2068 retailed for $199.99. The price did
not seriously drop when Timex left the market. The
price for the T/S 1000 did get to a closeout of $20
or less, but the T/S 2068 did not really drop.

The T/S 2068 community did continue through the
local user groups and a few Timex Sinclair
newsletters and low­cost magazines. When Timex
left the market the two glossy magazines that
covered T/S computers, closed shop. A few small
businesses continued support for the T/S 2068.
Software was written, hardware was designed, and
users found that the T/S 2068 was popular at annual
Timex/Sinclar Fests held around the US.

1983 was the year of the home computer wars in the
United States. The casualties were Texas
Instruments, Mattel, Timex, and Coleco. Even
more established brands removed some models
from the market. For Commodore the C16 and
Plus4. For Tandy the MC­10.

Page 3

After Timex left the market, the T/S 2068 still had
enough of a user base that a number of small
companies popped up to support it. It soon took
over the Sinclair user groups as the most popular
computer. The same happened with the different
Sinclair newsletters.

There was new hardware developed for it, including
a number of disk systems. Larken, Oliger, Aerco,
and Zebra made disk interfaces. From reading the
newsletters, Larken and Oliger were the most
popular. Larken also made a Ramdisk, so that files
could be saved quickly, but later had to be copied
off.

Software continued to be written. There were a few
T/S 2068 programmers that really knew the
computer and were able to produce some good
software. Pixel Print and its companion tools like
Icon Package and Font Package, moved the T/S
2068 onto the world of desktop publishing. Some
users explored the bank switching feature of the T/S
2068.

Aerco developed a cartridge that supported the
higher resolution screens and allowing 64
characters per line. A BASIC toolkit, Window Print
64, was created to allow window and print tricks for
this mode.

There were at least two Spectrum ROM add­ons
made to allow Spectrum software to run on the T/S
2068. One was an internal ROM that had an
external switch that selected T/S 2068 ROM or the
Spectrum ROM. Another was a Cartridge that fit in

the Dock.

RMG Enterprises of Oregon carried a lot of
hardware and software for the T/S 2068 and
specialized in finding T/S 2068 program authors
and publishing their software.

Time Designs and Update! magazines supported the
T/S 2068. Time Design closed in the late 1980s and
Update continued until at least the mid­1990s. It
was about the mid­90's that most dealers for the T/S
2068 started shutting down and user groups were
starting to fade.

T/S 2068 Specifications

The T/S 2068, although based on the Spectrum, it is
not 100% compatible with the Spectrum. The
major changes are:

1. Adding Cartridge Dock

On the right side to the T/S 2068 is a door that
opens up to reveal a cartridge dock. This allowed
youth to use the computer more like a video game
system and not taking the time to load games from
tape. This dock required the hardware to change
and support bank switching. The dock can also be
used to install a board with a Spectrum ROM and
allow the T/S 2068 to run Spectrum software.

2. AY Sound Chip

The T/S 2068 supports the traditional Spectrum
BEEP command for sound, but to expand on that,
an AY sound chip was added. This is the same chip
that is in the Zon X­81 sound system for the ZX81
and the Spectrum 128.

4. Additional Basic Commands

There are a number of new commands in T/S 2068
Basic that are not on the Spectrum. Examples are
FREE, STICK, SOUND, DELETE, etc. The
STICK command was for the built in joystick ports
and the SOUND command is for the AY sound
chip.

Page 4

5. Additional Video Modes

The T/S 2068 supports some additional video
modes; Display Mode 2 (64
Columns), Display Mode 3
(two screens), and Display
Mode 4 (Ultra High Color
Resolution mode). These
modes are really not used
and none of the guides are
books explain how to use
them. The exception is a
OS64 cartridge that allows
the use of the 64 column
node with BASIC.

6. Expansion Port Changes

The expansion port on the back of the T/S 2068 was
changed and it not compatible with the Spectrum,
so any Spectrum interfaces will not work with the
T/S 2068 without an adapter.

7. Memory Map Changes

With the hardware changes and the additional
display modes, there were changes in the memory
map of the T/S 2068.

8. ROM Changes

With all of the above changes, the ROM had to
change. The ROM has the routines pretty much in
the same order as the
Spectrum, but the addresses
of the ROM routines have
changed, so any Spectrum
programs that used machine
code will fail on the T/S
2068.

9. Built in Joystick Ports

The T/S 2068 has two built­
in D style joystick interfaces
that worked the same as most other American
computers joysticks, which allowed the common
Atari joystick to be used. A built­in joystick
interface would not be included on the Spectrum
until the +2.

The changes made to the T/S 2068 would have
worked, if Timex had remained in business and

created the software to support
all of these additional features,
but in the end it just meant that
T/S 2068 users really could not
use any of the Spectrum
software from the huge market
in the UK. A few programs
were ported to the T/S 2068,
but not enough.

The Basic on the T/S 2068 only
had minimal changes, so Basic

programs written for the Spectrum would run on the
T/S 2068. Even then, there was little effort put into
publishing the Spectrum Basic books in the US.

Basic Tools for T/S 2068 Emulators

With the use of emulators, it is fairly easy to write
code using an editor and have it converted into a
TAP file that will work on the emulators.

Despite the few differences in Basic between the
Spectrum and the T/S 2068, tools used for the
Spectrum should work.

I've been tinkering with zmakebas. It comes as a C
program that I was easily able to compile for my
Linux system. Almost any TAP file that I create

with zmakebas for the
Spectrum will also work
on the T/S 2068.

What I like about
zmakebas is that it
supports not using line
numbers and using labels.
It ignores empty lines in
between code.

I do have to avoid using
any of the Basic commands that are specific to the
T/S 2068. If I needed them there are two options.
One would be to add code to zmakebas to include
those BASIC commands. The other option would
be to write the code and use the equivalent

Page 5

character on the Spectrum as the command on the
T/S 2068. The additional T/S 2068 commands
replace Spectrum characters. The FREE command
has the value of 126. On the Spectrum that is a
tilde. If I put a tilde in Basic, it will show up on the
T/S 2068 as the FREE keyword.

Another tool is bas2tap. It also comes with C
source that I was able to compile. It will take a
BASIC program witten in ASCII and convert to a
TAP file. It is more restrictive than zmakebas as
line numbers are needed. It has syntax checking,
which can come in handy.

I've tested both tools and they both produce a TAP
file that will work on the T/S 2068. My preference
is to zmakebas, as I like not having to worry about
line numbers.

Basic Compilers for the T/S 2068

There are two compilers for the T/S 2068, ZIP and
Time Machine.

ZIP was written for the Spectrum by Simon
Goodwin. Knighted Computers of New York
licensed ZIP for the T/S 2068 and had Simon do the
port. Simon, in a posting on the web, said that
during the porting of ZIP he did not have access to
a T/S 2068, but was given a list of ROM call
locations. After some work, he was able to create a
working compile for the T/S 2068.

I've looked online but I have not seen any archived
copies of ZIP for the T/S 2068. The Spectrum
version is not available for distribution and this
could also affect the T/S 2068 version.

Time Machine was originally sold for the Spectrum
as HiSoft Basic. Novelsoft had it ported to the T/S
2068 and renamed it Time Machine. Oddly enough,
the load screen for Time Machine says
"TIMACHINE".

I found Time Machine on a T/S 2068 archive site.
It loads fine and works as described in the HiSoft
Basic manual, but it has an issue. No matter what
program I have loaded to compile, it does not
compile. Once a program is compiled, the screen
will show the size of the compiled program and the
location in memory. In each case, the size has
always been 0. I know that HiSoft Basic is a subset
of Sinclair Basic, so I've kept my example programs
small and easy, even one that was just a few print
statements. They all compile to 0 bytes. I have
tried Time Machine with both Warajevo and
EightOne and have gotten the same results.

To make sure I was not doing something wrong, I
stared EightyOne in Spectrum mode, loaded HiSoft
Basic and compiled a simple program. That
worked. It showed the number of bytes.

I'm not sure why Time Machine is not working.

T/S 2068 Emulators

These days a lot of people are using emulators for
retro computing. Real hardware is failing, it is
harder to find and when it is found, some people
want a lot of money for it. With emulators, these
issues can be avoided. Plus, with cross
development tools, it is easier to develop on a
modern operating system and then port code to the
emulated system.

There are three emulators that support the T/S 2068,
EightyOne, Zesarux and Warajevo. EightyOne and
Zesaurux emulators are multi­platform emulator,
meaning that they emulate a number of computers
including the entire Sinclair and Timex Sinclair line
of computers. Warajevo is a DOS­based emulator
that does the Spectrum (48K and 128K) and the T/S
2068.

EightyOne is Windows based and has been updated
in the last year or two. It can be easily found via a

Page 6

Google search. It is a simple executable so
installation is trivial. EightyOne has been tested on
Linux with WINE and to works just fine. The list
of systems emulated is listed by company, Sincliar,
Timex Sinclair, etc. You can emulate a ZX81 or a
T/S 1000, which are pretty much the same system.

Being a Windows program there is a nice GUI used
with the emulator. This makes it easy to pick tape
files to load (.TAP) and Dock files to "plug in".
EightyOne is probably one of the most popular
emulators for Sinclair systems and should be known
by almost everyone.

Zesarux is Linux based, is very actively updated
and the newest emulator on the block. Zesaurux
comes with source code and is easily compiled. As
the most recently updated emulator it does have the
latest features. It has a mouse driven menu system
that makes it easy to change options. The
documentation is limited. The author is always
posting to the different forums about the latest
version and what fixes and new features that it has.

Warajevo is an older DOS­based emulator that
works fine using DOS­BOX. DOS­BOX is a DOS
emulator that will run on Windows and Linux.
Warajevo was written in the late 1990's by two guys
from Sarajevo. The emulator has a range of options
detailed in a huge user guide. The user guide
details sections on the emulation of the tape
recorder, microdrives, network, MIDI interface, etc.

There is even a built in monitor for doing assembly
language programming.

Since it is DOS­based, there is no GUI around the
emulator. Control of the emulator is done through
function keys. The emulation seems to be a little
slow, but that could be the emulator trying to
emulate the speed of the T/S 2068

Despite how old Warajevo is, it is still a good
emulator with lots of features. Using DOS­BOX
makes it easy to run the emulator on a number of
platforms. Once I figured out the function keys,
using Warajevo was fairly easy.

Googling will find a few T/S 2068 archives. World
of Spectrum has some software. Another is
http://k1.spdns.de/Vintage/Sinclair/82. The
software comes in .Z80, .TAP and .TZX.
Cartridges come as .DCK. A fair bit of the software
that Timex released is available. Most of the
software available is games. I have found some
software written by US authors Musicola, Multi­
Draw, War in the East and Britain Invaded.

T/S 2068 Assembly Language
Programming

I have done ZX81 assembly language programming
for a few years. Now that I am getting into the T/S
2068, I thought I would learn what I could on
programming the T/S 2068 in assembly.

I started by reading what I could on the T/S 2068.
There in an Intermediate/Advance Guide to the T/S
2068 that has a section on machine code. Reading

through that, there was little helpful information.
There were a few short examples, but nothing more
than the very basics.

I then trolled through some old T/S 2068
publications that I had, such as Time Designs,
Update and some user group newsletters. I found
some examples, but nothing too instructive.

There was also the issue of what assembler to use
and how to get it to output a binary that will run on
the T/S 2068. I've used Pasmo for the ZX81 so I
looked into it. For the
ZX81, there is a
template that sets up the
BASIC statements and
REM statement.

Then I realized that the
main different between
the Spectrum and the
T/S 2068 is the location
of the ROM routines. If
I could find some
instructions on
Spectrum assembly language, I just had to convert
the ROM routine address from the Spectrum to the
T/S 2068.

Here are the different documents that I found in my
search to learn more about T/S 2068 assembly.

For the T/S 2068:

T/S 2068 Technical Manual ­ details the name of
the ROM routines and their location.

Timex/Sinclair 2068 Intermediate/Advanced Guide
by Jeff Mazur

"2068 BASIC ROM Calls", Ray Kingsley,
SyncWare News

For the Spectrum:

Spectrum Complete ROM Disassembly, Dr. Ian
Logan

Spectrum Machine Code Made Easy, James Walsh

Mastering Machine Code on your ZX Spectrum,
Toni Baker

How to Write ZX Spectrum Games, Jonathan
Cauldwell

I am using Pasmo as my assembler because it will
create a .tap file for the Spectrum that has the
BASIC lines to start the assembly program.
Initially I was thinking that I had to create a .bin file

of just the assembly code
and use the LOAD ..
CODE command to get it
into the emulator, but
reading the Pasmo
documentation I found the
­­tapbas option.

I also created a file with all
of the ROM routines so that
I don't have to call them by
number, but by name. I did
the same thing for the
system variables.

Test1

The first program I did was a simple "print a
character to the screen". This was a simple as
putting the character to print into the A register and
then call RST 16 (or RST $10 in hex) to print to the
screen.

I compiled the program like this:

pasmo ­­tapbas test1.asm test1.tap

The BASIC lines that Pasmo puts in autoruns the
program, so it is run as soon as it is loaded into an
emulator.

Instead of using a REM statement for storing the
program, I have loaded it into upper memory at
location 65000.

Test2

The second test program takes another baby step

Page 7

;; test1.asm
;; Print a single 'A' character

ORG 65000

LD A,65 ; put "A" char in A
RST 16 ; print
RET ; return

END 65000

and adds a ROM call for CLS to
clear the screen. In the previous
example, the A character was
printed at the next print position.
After loading the program, there
was text on the screen
documenting the load, and the A
was printed after that.

Test3

The third test program adds a loop
to print a number of characters to
the screen. Again, it is just another
baby step.

Test4

In the fourth test program, instead
of using RST 16 to print, the
program copies the character
directly to the memory location of
the screen. Screen memory begins at 16384. This
program uses the LDIR command as a form of
loop.

Test5

The "Intermediate/Advanced Guide" book talks
about the Function Dispatcher. This is a way to call
ROM routines. It is very well documented in the
T/S 2068 Technical Manual with the ROM routines
documented as Service Routines access through the
Function Dispatcher.

To use the Function Dispatcher, there is some set up
code with the DE register pair, then the Service
Routine number is loaded into DE and then the
Function Dispatcher is called. In the test program,
BC is used for storing an X and Y coordinate. Then
the PLOT routine is called. The whole program is
11 lines of assembly. It seems a little too much just
to use PLOT.

Test6

This the same program as test 5, but I had called the
PLOT ROM call directly. Well, technically I am
calling the PLOTBC ROM call, where the X and Y

coordinate are in the BC
register pair. This program
is 6 lines of assembly,
saving 5 lines by not using
the Function Dispatcher.
I'm not sure why the
Function Dispatcher was
created as it seems like
there is a lot of overhead
when using it.

Test7

To test the SETAT or
PRINT_AT ROM routine,
this program was created.
The print location (column
and row) is put into BC
and SETAT is called. Then
RST 16 is called and the
character is printed at the
B,C coordinates.

Test8

The paper written by Jonathan Cauldwell, the
author takes a stepped approach to creating a
Spectrum game in assembly. The first example is a
simple "print to the screen". In his example, he sets
the A register to 2 and then calls OPENCH (open
channel). Channel number 2 is the screen, so he is
opening up a channel to the screen. I have not
digged deep enough to know much about channels,
and the program crashed on the T/S 2068. In
reading the Technical Manual, I found that the
Function Dispatch version of OPENCH expects to
have the channel on the calculator stack. I found
the ROM routine STACKA, that put the contents of
the A register onto the calculator stack. This still
crashed.

In the end I just removed the OPENCH ROM call
and the program worked.

The main part of this program is to call PR_STR, or
Print String. This call is not documented as a ROM
call, but as a subpart of a ROM call. Luckily I
found a similar example for the T/S 2068 and it
worked.

Page 8

;; test5.asm
;; Plot a point using the
Function Dispatcher

INCLUDE 'lib/rom.asm'

ORG 65000

LD BC,7FAFh
loop: PUSH BC

LD DE,0000
PUSH DE
PUSH DE
LD DE,89
PUSH DE
CALL FUNCDISP
POP BC
DJNZ loop
RET

END 65000

Test9

This is more of the program
from Cauldwell and it sets
up a UDG character and
has it move up and down
the screen in an endless
loop. It is a interesting
program that really does
not use any ROM calls. It
is useful in showing how to
set up UDG's.

Test10

I found a different example
of printing a string, but
using the PRINT ROM call.
In this example, instead of
telling the rouinte how
many characters to print, it
will print until it finds a
specific character or byte.

Test11

This program gets a
character from the
keyboard and prints it to the screen. It uses the
LAST_K (last key) system variable to find out what
key the user touched. The system variable is set to
0 and when it changes, the program knows to print
the character.

On the ZX81, getting a character from the keyboard
was a two step process in getting the keyboard
input and then converting that to a character value.
With the T/S 2068 and this method, it is a single
step. Since the system variables are basically the
same between the Spectrum and the T/S 2068, this
program would work on the Spectrum.

Loading Screens

I was recently reading a story about an old Apple II
interactive fiction game called "Time Zone". It
came out in 1982 and was composed of 6 floppy
disks. In those days, a game would normally take
only a single disk, so this game was quite large.

In thinking about the
game, I thought about
how the graphics were
probably saved on disk
and just loaded to
memory to display them.
This allowed the game to
have an almost unlimted
amount of screens.

I was thinking about
how you can't do this
with the ZX81, but then
I realized that you could,
well, at least with the
sz81 emulator.

In the last issue I wrote
on how sz81 has a new
LOAD command that
will load data from disk
to memory. If the data
on disk is a dump of
screen memory, then
when loaded to the
ZX81, you could put it
on the screen.

To test this, I knew that I had a few things to do. I
first had to create a demo ZX81 screen in a binary
file on my OS. Once that was created, I could load
the file to memory, just like I had previously, to
high memory. To get it to screen memory, a short
assembly language routine could be written. Then
a bit of BASIC would put all of this together.

It was fairly simple to write a C program that would
write out the value 136 ($88) to disk (this is the
grey square) 32 times, and then a 118 ($76). This
was done 22 times. I did not want the extra 2 lines
in the lower area of the screen.

The assembly routine came from Toni Baker's
machine code book in Chapter 12, where she talks
about screens. The assembly is a simple block
move from one memory location to another:

LD HL,32770
LD DE,(D_FILE)
LD BC,726

Page 9

;; test11.asm
;; Print characters typed on the
keyboard

ORG 65000

start:
LD HL,23560

; Put LAST_K into HL
LD (HL),0

; Let LAST_K to 0
loop: LD A,(HL)

; Let A = LAST_K
CP 0

; is LAST_K still 0?
JP Z,loop

; If it is, loop
RST 16

; If not, then print the
character

JP start
; Go back to the beginning

END 65000

LDIR
RET

The BASIC code to connect this together is fairly
simple:

REM XXXXXXXXXXXXXXXX
LOAD "TEST.SCR; 32770"
RAND USR 16514

I used zxtext2p to create the .P file for the BASIC
program. I used Pasmo to compile the assembly
language routine into a .bin file. Using 'dd' I added
the assembly language binary to the .P file (see the
last issue).

From there I loaded up sz81 and ran the program. I
had a few minor mistakes in the assembly langauge
code and one mistake in the BASIC code, but with
those fixed, the screen was soon filled with grey
squares.

Looking more into this, I realized that I did not
need to load the file into higher memory, but could
load it straight into screen memory. Here is the
BASIC program to do this:

LET X = PEEK 16396 + 256 * PEEK 16397
LET X = X + 1
LET A$ = "TEST.SCR; " + STR$ X
LOAD A$

The first parts gets the address of screen memory
from the D_FILE system variable. I incremented X
because I did not create a leading $76 in the file, as
needed for screen memory. I then created a string
with the LOAD option and converting X to a string
to be part of it. Then LOAD
takes the string and loads the file.

This procedure has the feature of
not taking up any ZX81 memory,
other than screen memory. A
large number of screens can be
put on disk and then loaded over
and over, taking up no additional
memory.

The screen.bas program
demonstrates screen loading

using the first method. The second example,
screen2.bas, loads three example screens, one after
another. There is a pause between screens, so hit
any key to move to the rest. The screens are
test.scr, test1.scr and test2.scr.

If creating an interactive fiction game, the text and
logic of the game could take up as much memory as
possible, with the game screens all coming from
disk. The screen loaded does not need to be a full
screen, so that there is room for the text of the
game. The LOAD command will load in as much
of the screen that is in the file. If the file only holds
half a screen, then it will load half a screen.

ZXpaintyOne

After tinkering with loading screens from disk, I
was next thinking about how to draw the screens.
ZXpaintyOne is a javascript program that runs in a
web browser that works like a version MS Paint,
but only with the character graphics of the ZX81.

When ZXpaintyOne is started, there is a blank
drawing area on the left. The background is a light
hex pattern that shows the character blocks on the
ZX81 screen. The drawing area is a full 24 lines,
which includes the two lines reserved for BASIC
input.

Using the left mouse button, black pixels are drawn
on the screen. If the cursor is moved too fast, the
pixels will skip and not draw a complete line,
circle, arc, etc. The right mouse button is
essentially an erase button, but one would also look
at it as drawing a white pixel on the screen. The

Page 10

middle button handles the gray characters. The
smallest gray in the ZX81 character set is a half
character (or about two pixels wide).

Once the picture is drawn, there are two ways to
save the image. It is possible to create a .P file that
creates a BASIC program with PRINT statements
to create the image on the ZX81. With this option,
it is not possible to convert the .P file back into the
image in ZXpaintyOne.

The other option is to "save" the image. A small
window just under the Save button is then filled
with the hex code for the value of the characters in
the image. The user then puts the mouse cursor in
this windows and selects all of the text, where it
can be copied and then pasted into a text file. Later
the characters from the text file can be copied and
pasted back into the window in ZXpaintyOne. Then
the Load button is clicked and the image is back
into the drawing screen, ready to be edited.

This is all great, but I needed to get the image I had
drawn into a format that can be loaded into the
ZX81. Looking at the characters in the Load/Save
window, I noticed that they are the hex value of the
character in that part of the screen. The string of
characters does not include anything other than
what is drawn. Each space on the screen is
represented with two characters. I needed a way to
convert this string into a binary file.

With a little C coding, I was able to get what I
needed. The C program takes the text file, reads in
two characters at a time and coverts that to a
decimal number. This decimal number is then
written to an output file.

The ZX81 screen layout has 32 characters then a
$76 which acts as an end of line marker. The text
file did not include an $76, so the C program has to
read in 32 characters, output 32 characters, and then
output a $76. I do not plan on using the lower 2
lines of the screen, my program only reads 22 lines.

The resultant binary file can be loaded directly into
the ZX81. After debugging the C program and
using the Linux od command to check that my
output is what I wanted, loading the screen into
sz81 worked the first time.

The program is run like this:

zxpainty infile.bin outfile.scr

When I create the file for the hex values from
ZXpaintyone, I give the file an extension of .bin
(short for binary). When the file is turned into the
format for the ZX81 screen, I use the .scr extension.
The program requires an input file name and an
output file name, in that order. If one of the files
can not be opened the program will exit, letting you
know which file could not be opened.

The C program is fairly simple and should be able
to be compiled for almost any environment.

QDDASM ­ Quick and Dirty
DisAssembler

I've been tinkering with Z80 disassemblers and the
ones that I found had some issues. I could not get
the disassemblers to output the right information. I
realized that to get what I wanted, I would have to
write my own disassembler.

QDDASM is a disassembler for the Z80 written in
portable C code. QDDASM stands for Quick and
Dirty Disassembler. Instead of using a table to
convert numerical values to an opcode, I decided to
keep it simple and use a number of IF statements.
It makes the code long, but it should be fairly easy
to understand what the disassembler is doing.

The code is simple and portable. It should be easy
to compile on most platforms. Despite the large
number of IF statements, I found that the program
runs fast on my Linux laptop. Disassembling a
large program took almost no time.

QDDASM was written specifically for the ZX81
and has a number of ROM locations built in, so
when it sees a CALL statement it can print the right
ROM location when it finds it. If additional ROM
routines need to be added it is fairly simple to add
them, the end user just needs to know the decimal
value of the location of the ROM routine. Even for
someone that is unfamiliar with C should be able to
see the existing code and add to it. Recompiling is
simple:

Page 11

% cc ­o qddasm qddasm.c

qddasm will take a binary file, reading the bytes
and converting to Z80 assembler code.

Usage:

qddasm file pc bytes

file ­ the name of the file to disassemble.
pc ­ the start of the program counter, or what value
or memory location should qddasm list for the first
opcode disassembled.
bytes ­ the number of bytes to read in the file before
starting the disassembly.

Dissassembly a ZX81 .P file

The usual way that assembly programs are done on
the ZX81 is to put the machine code into a REM
statement at the beginning of the program. Usually
a call is made to location 16514 to start the
assembly part of the program. QDDASM is
designed to work in these situations.

hello1.p is an included file. It was created from the
assembly language file hello.asm by the PASMO
assembler. This will be the first example file to
show how to use the disassembler.

Here is the orignal assembly for hello1.p:

LD HL,line
PLINE LD A,(HL)

CP $FF
JP Z,ENDD
CALL PRINT
INC HL
JP PLINE

ENDD RET

line: DEFB
_H,_E,_L,_L,_O,$00,_W,_O,_R,_L,_D,
$76,$ff

When disassembling the .P file, the first step is to
make sure that there is a REM statement at the
beginning of the program. Use the included
program, ZX81LIST to list the BASIC lines in the

program. This program is from Jack Raat. Run the
program like this:

% zx81list hello1.p hello1.out
% cat hello1.out

­­­­­ START OF LISTING ­­­­­

1 REM
1 RAND USR VAL "16514"

This will output the file, hello1.out, to the screen.
Notice that line 1 is a REM statement.

The next step is to find location of the REM
statement in the .P file. The program, find_rem,
reads through the .P file and locates the position of
the REM statement. Run it like this:

% find_rem hello1.p
REM is at 121

The output shows that the REM statement is the
121st byte in the program.

Now that we know where to start the disassembler,
run QDDASM like this:

% qddasm hello1.p 16514 121

This tells qddasm to open hello1.p and to start
disassembly at the 122nd byte in the file. In other
words, to skip the first 121 characters. It also will
start the program counter at 16514, which is the
memory location of the first character in the REM
statement if it was in ZX81 memory.

Here is the output from qddasm:

16514 LD A,(HL)
16515 JP 16521
16518 NOP
16519 NOP
16520 HALT
16521 LD HL,16538
16524 LD A,(HL)
16525 CP 255
16527 JP Z,16537
16530 CALL PRINT

Page 12

16533 INC HL
16534 JP 16524
16537 RET
16538 DEC L
16539 LD HL,(12593)
16542 INC (HL)

Note that the first bit of assembly is different than
the original code. There is an include file that I use
when creating a .P file in PASMO that comprises
the first 5 bytes. The main thing to notice is that it
does a JP to 16521, which is the start of the original
code.

Another note, all output from qddasm is in decimal
and not hexadecimal, as in the original code.

Also note that after the RET in line 16537, there is
a DEC L, which is not part of the original code.
Qddasm does not know of a byte read in is an
opcode or data and it assumes that it is an opcode.
If the assembly program puts all of the data at the
end of the code (like the hello1.asm example) then

the disassembly should be accurate. If the data is
embedded in the assembly, then the disassembly
could be inaccurate.

Limitations of QDDASM

The biggest issue with QDDASM is that is not
possible for the disassembler to know if a binary
value is an opcode or a bit of data. The
disassembler will always assume an opcode. If
there is data in the middle of the disassembly, then
this could lead to inaccurate results, esp. of the
binary value is also an opcode that needs to read in
additional data.

I've looked into using QDDASM for disassembly
of the T/S 2068 ROM. I first started with a
Spectrum ROM and found in the published
Spectrum ROM disassembly that there are some
unused memory locations on ROM that QDDASM
will treat as an opcode, leading to inaccurate
results. I might work on a solution so that
QDDASM can work on disassembling a ROM.

Page 13

